

InterACT: Inter-dependency Aware Action Chunking with Hierarchical Attention Transformers for Bimanual Manipulation

InterACT

¹University of California Davis, ²University of California Berkeley

Andrew Lee¹, Ian Chuang^{1,2}, Ling–Yuan Chen¹, Iman Soltani¹

- **InterACT** is a model **designed for bimanual manipulation** tasks
- **InterACT** leverages hierarchical attention to capture inter-dependencies between joint states and visual features
- **InterACT** is capable of handling varying levels of coordination within bimanual manipulation tasks
- **InterACT outperforms baseline** ACT in both simulation and real-world bimanual manipulation tasks

• An effective model should be able to handle virtually independent movement of each arm as well as heavily coordinated actions

2. Solution

- U We propose InterACT designed for bimanual tasks
 - InterACT leverages hierarchical attention to capture inter-dependencies between dual-arm joints and visual input
 - InterACT decouples action prediction for two arms with parallel Ο decoders

Key components of InterACT

• **CLS tokens** — special tokens represent and summarize each input segment, facilitating better coordination between arms Attention weights for other arm's CLS tokens at decoder (left: insert peg, right: cube transfer)

CLS tokens play a crucial role during the coordination phase • CLS tokens that captured inter-dependencies give the model flexibility to leverage the information when needed

	Transfer Cube (Sim)			Peg	Peg Insertion (Sim)			Slide Ziploc (Real)			Thread Velcro (Real)		
	Touch	Lift	Transfe	r Grasp	Contact	Insert	Grasp	Pinch	Open	Lift	Grasp	Insert	
ACT	82	60	50	76	66	20	96	92	88	88	42	16	
InterACT	98	88	82	88	78	44	96	92	92	94	56	20	
	Slot insertion (Sim)InsertLiftInsertGr		Insert Plu	sert Plug (Real) Click Per		n (Real) Sweep (Real)		Unscrew cap (Real)					
			Grasp	Insert	Grasp	Click	Grasp	Sweep	Tou	ch U	nscrew		
ACT	96	8	8	92	30	92	56	88	42	84	Ļ	60	
InterACT	100	1()0	92	42	94	62	92	52	88	3	62	

- **Hierarchical Attention Encoder:** consists two components 1) Segment-Wise Encoder — captures **intra-dependencies** within each arm's joint and visual features 2) Cross-Segment Encoder — captures **inter-dependencies** across arms and visual features
- Multi-arm Decoder: consists two components 1) Arm-specific decoders — two parallel decoders generate independent actions for each arm
 - 2) Synchronization block share information across decoders to ensure coordinated actions

□ InterACT outperforms baseline ACT on bimanual tasks — in all low and high level of coordination phases

	Transfer Cube			Peg Insertion			Slot Insertion	
	Touch	Lift	Transfer	Grasp	Contact	Insert	Lift	Insert
InterACT (no CLS Tokens)	98	84	84	70	68	22	100	86
InterACT (no CS Encoder)	80	72	72	84	80	24	100	98
InterACT (no Sync Block)	74	54	54	90	86	30	100	100
InterACT (all components)	98	88	84	88	78	44	100	100
		Ablati	on study re	esults				

□ Ablation demonstrates our components — CLS tokens, Cross-Segment Encoder, and Synchronization block contributes to better bimanual manipulation performance when utilized together

4. Architecture of InterACT							
CLS Embedded Joints Arm1 sequence:	[CLS] Embedded Joints [CLS] Embedded Cam 1 Embedded Cam 4 ce: •••• •••• [CLS] Embedded Cam 1 ••••						
Hierarchical Attention Encoder	U Multi-arm Decoder						
	Image: Arm1 Decoder Input Image: Arm1 Decoder Input Image: Arm1 Decoder Input						

Segment-Wise Encoder

- Process each segment (two joints, visual data) independently
- CLS tokens capture **intra-dependency** information
- Cross-Segment Encoder
 - Process only **CLS tokens** from the segment-wise encoders
 - CLS tokens capture **inter-dependency** information

• Arm-specific decoders: responsible for actions for its respective arm • Input only relevant tokens — its arm sequence, other arm's **CLS tokens and visual features Synchronization block** Process Intermediate output from initial cross-attention blocks of Ο

the two decoders