

ERSITY OF CALIFORNIA

UC Berkeley

Exploring Active Vision in Bimanual Robotic Manipulation

Active Vision Might Be All You Need:

Ian Chuang^{*1,2}, Andrew Lee^{*1}, Dechen Gao¹, Mahdi Naddaf¹, Iman Soltani¹ ¹University of California Davis, ²University of California Berkeley *Equal Contribution

How to overcome occlusions and limited field of view in imitation learning? Introducing... AV-ALOHA!

AV-ALOHA:

- A bimanual robot system with 7-DoF active vision (AV) and 1st person VR control!
- Overcome limitations of fixed or eye-in-hand cameras with dynamic viewpoint control.
- Platform to explore learning human-guided active vision.
- Open-source code, hardware, simulation environment, and datasets.

Control simulation with VR!

camera configurations:

- Active Vision (AV)
- Static cameras
- Wrist eye-in-hand cams

Active vision improves performance when there are occlusions or limited visibility!

Success Rates (%) of ACT Policy on Different Tasks and Camera Configurations Group 2 Group 1 **Peg Insertion Slot Insertion Hook Package Pour Test Tube Thread Needle Occluded Insertion** Grasp Grasp Hook Thread Insert Insert Grasp Insert Grasp Grasp Pour Grasp **52** 26 **52** 40 (14) AV 22 98 42 88 50 100 20 74 66 60 10 98 AV + Static 50 20 84 46 100 62 100 34 14 30 95 82 34 22 70 92 AV + Wrist 44 100 96 36 90 40 AV + Static + Wrist 78 36 24 100 36 100 88 30 85 **48 44** 44 84 98 100 20 Static 66 22 88 30 38 40 **78** 100 100 15 Static + Wrist 100 46 42 92 84 8 10 15 Wrist 98 44 44 94 44 60